Rank One Bridgeland Stable Moduli Spaces on a Principally Polarized Abelian Surface
نویسندگان
چکیده
We compute moduli spaces of Bridgeland stable objects on an irreducible principally polarized complex abelian surface (T, `) corresponding to twisted ideal sheaves. We use Fourier-Mukai techniques to extend the ideas of Arcara and Bertram to express wall-crossings as Mukai flops and show that the moduli spaces are projective.
منابع مشابه
Fourier-mukai Transforms for Abelian Varieties and Moduli of Stable Bundles
We classify Fourier-Mukai transforms for abelian varieties. In the case of a principally polarized abelian surface these are then used to identify a large family of moduli spaces of stable vector bundles as Hilbert schemes of points on the surface.
متن کاملModuli of Bridgeland semistable objects on P
Let X be a smooth projective surface, Coh(X) the abelian category of coherent sheaves on X, and D(X) the bounded derived category of coherent sheaves on X. We study the Bridgeland stability conditions on D(X) and see that for some stability conditions on D(X) the moduli spaces of (semi)stable objects in D(X) coincide with the moduli spaces of (semi)stable coherent sheaves, while for some other ...
متن کاملRank One Eisenstein Cohomology of Local Systems on the Moduli Space of Abelian Varieties
We give a formula for the Eisenstein cohomology of local systems on the partial compactification of the moduli of principally polarized abelian varieties given by rank 1 degenerations.
متن کاملFormal Brauer groups and the moduli of abelian surfaces
Let X be an algebraic surface over an algebraically closed field k of characteristic p > 0. We denote by ΦX the formal Brauer group of X and by h = h(ΦX) the height of ΦX . In a previous paper, [6], we examined the structure of the stratification given by the height h in the moduli space of K3 surfaces, and we determined the cohomology class of each stratum. In this paper, we apply the methods ...
متن کاملCYCLIC COVERING MORPHISMS ON M0,n
We study cyclic covering morphisms from M0,n to moduli spaces of unpointed stable curves of positive genus or compactified moduli spaces of principally polarized abelian varieties. Our main application is a construction of new semipositive vector bundles and nef divisors on M0,n, with a view toward the F-conjecture. In particular, we construct new extremal rays of Nef(M0,n/Sn). We also find an ...
متن کامل